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BEHAVIOUR
By J. Arseneault, A. Dionne, J. Beaman, M. Renoux
ABSTRACT
This paper focuses on certain issues that are important in understanding the value of analysis of
variance, ANOVA*, models in recreational research, particularly whether a simple analysis of
variance model is structurally sound and whether its use may lead to errors in estimating
behaviour.
The results of the Michigan Automatic Interaction Detector (AID) program and of regression
analyses of the 1969 and 1972 Canadian Outdoor Recreation Demand Study, CORDS, National
Survey Data on Canadian's Participation in Outdoor Activities are included to illustrate how
interaction effects affect analysis when trying to explain participation in an activity using socio-

economic variables as the independent variables. The results of the analysis of simulated data are
presented to show the degree to which AID explains data as compared to using a correct analysis
of variance model. Conclusions are that:
1. significant interaction effects exist when one tries to explain Canadian residents' participation

in particular outdoor activities in terms of socio-economic characteristics;
2. a simple main effect analysis of variance model is not adequate to explain most recreational

behaviour;
3. the use of the AID analysis program gives one an idea of the magnitude of the sum of squares

associated with interaction effects but its use does not provide a systematic way of
identifying effects; and

4. repeated application of traditional regression methods to identify interactions does result in
"finding" interaction terms that improve a simple linear model but the improvement
achieved can be limited and, what is more, the possibility of type II errors in using
regression repeatedly to determine interaction effects raises serious questions about using
this approach to improve (define appropriate) models.

*NOTE: In CORDS using analysis of variance, ANOVA, does not refer to running a program that
“partitions” variance based on the assumption that data were collected using a designed
experiment. In the terminology of 2006, one is referring to using multiple regression to analyze the
variance in a dependent variable based on the values that independent variables happened to take – in
the general case based on the “general linear model” presented in Scheffe 1959 pp. 13-22).

INTRODUCTION AND PURPOSE
As of the 1970s, the best known use of analysis of variance modelling techniques for

predicting participation in recreation was Mueller and Gurin (1961). More recently other
examples of applying this technique have become frequent. In the Canadian Outdoor Recreation
Demand (CORD) Study, Hendry (1970) suggested using analysis of variance (in the form of
dummy variable analysis); this technique was actually pursued using a 1969 National Survey to
develop differentials related to age, sex, family status, etc. Subsequently, TN 12 of the CORDS
showed how the socio-economic differentials for 26 activities could be used in making
projections. Renoux (1973, 1975) used this methodology to develop a hunting model and other
models for the Province of Quebec.

An important result of previous CORD Study work and Renoux's research has been the



identification of a number of problems associated with the use of analysis of variance techniques.
The purpose of this paper is to focus on the need to include interaction effects in modelling
behaviour. The structure of the note reflects the history of research on interaction effects and
regression models. It is convenient to present some definitions and then describe some early
research from which no results are presented. Early research led to successful research on
interaction effects and finally led to some findings that are presented in this paper. Through this
strategy of showing the background of research the authors believe that the reader will get the
best "feel" possible for the multitude of problems involved in developing and improving the kind
of models of concern here.

The data used in the various analyses presented are not described in any detail but are
documented in CORDS Volume III (consult the CORDS web posting to find out about
availability of the data as well as of documentation).

DEFINITIONS
Here the term main effects model is used to refer to a model in which participation or

non-participation in an activity is expressed as the cumulative sum of socio-economic effects. It
is the kind of model defined and described in detail in TN 12 (see also TN 15). In equation form
such a model is:
(1) Y(i,J,,L,M,Q) = U + B(1,J) + B(2,K) + B(3,L) + B(4, M) + B(5,Q) +ε(i)

WHERE Y(i,J,K,L,M,Q) is 0 or 1 depending on whether individual i participated in the
activity being considered;

J,K,L,M,Q refer to the socio-economic categories that person i is in where J refers to a
category of the socio-economic variable 1, K refers to a category of the socio-economic
variable 2, say Age, L refers to a category of the socio-economic variable 3, etc.

U is a general level/probability of participation in the activity under consideration;
B(1,J) is the effect of being in category J. of the socioeconomic varIable 1, B(2,K) Is the effect

of being in category K of the socioeconomic variable 2, and B(3,L) is the effect of being in
category L of the socio-economic variable 3, etc.

ε(i) is an error term.
It is possible that the kind of model just defined oversimplifies the interrelationships

between the variables used to predict behaviour. For example, it is likely that relationships
between gender, age and education exist that help one understand hunting participation. For
example, having a high level of education and being old may mean something quite different
from having a high level of education and being young. A person with a high level of education
who is old may tend to come from an urban non-hunting background and thus have a very low
probability of hunting, particularly if female. The main effects model does not allow for the
interaction effect between education and age affecting hunting just described except in as much
as one calculates one model for males and one for females as is done in TN 12. (TN 27 pursues
the effects of interactions in another context.)

Consider a very simple model involving interactions. It is assumed that the participation in
an activity can be explained by means of two socio-economic effects, A and B and by the
Interaction between them, AB. Stated mathematically, individual behaviour is represented by
Equation 2a and the somewhat more general form Equation 2b.

(2a) Y(i,j,k) = U + A(i) + B(j) + AB(i,j) +ε(k)
(2b) Y(i,j,k) =μ+ β(i,1) + β(j,2) + β(i,j,3) +ε(i)
WHERE Y(i,j,k) is the dependent variable,



μis an average effect for all individuals to which other effects are a “correction”;
β(i,1) is the differential (offset from μ) effect of factor/variable at level i;
β(j,2) is differential effect of factor two being at level j;
β(i,j,3) is the adjustment to β(i,1)+β(j,2) that is necessary because these occur together;
ε(i) is a random error term applying to a particular individual.
There are conditions which theβ( ) coefficients must satisfy which the reader may review

in a number of sources (e.g. Wasserman, 1974). However, the important point here is that to have
a great deal of freedom in how interaction effects are defined, the kind of formulation introduced
here can be used. The formulation is such that many unknowns are usually computed to explain
behaviour.μand (m-1), (n-1) and (m-1)(n-i) values ofβ( ,1)'s, β( ,2)'s and β( , ,3)'s respectively
must be computed to define the model when all of the usual constraints on the model parameters
are considered. Now if in Equation 2, instead of just having three types ofβ( )'s one wants to
have the 10 socio-economic variables for which effects were calculated in TN 12, then to have a
model like the one just introduced with interaction terms between every pair of variables there
must be (10)(9)/2 = 45 such terms. For N variables the number of terms is (N)(N-1)/2.

Furthermore, just as for one interaction term for variables with m and n levels there are
(m-1) times (n-1) unknown β( )'s to be calculated. For a "complete" 2-way interaction model with
10 variables this means the number of parameters to computed is Σ(n-1)(m-1) over 45 second
order interaction terms. Even if one estimates all the 2-way interaction effects they have not
necessarily dealt adequately with interaction. One can consider 3-way interactions. These depend
on the value of three variables. If all three-way interactions between variables are to be considered
when there are N variables in a model, the number of 3-way interactions is N(N-1)(N-2)/(3)(2)(1)
which equals 120 for N = 10. As one might guess, for each of these there are (n-1) (m-1) (p-1)
interaction β( , )'s to be estimated (n, m and p refer to the number of levels of the three variables
of a particular third order interaction). So it should be clear that one cannot simply insert all
possible first, second, third etc. order interaction terms into a model and proceed to estimate
parameters.

The discussion thus far suggests that when very many socio-economic variables are
considered, the number of coefficients is so large that estimates could not be made on any 1970s
computer. A more practical consideration, and one relevant any time, is that when large numbers
of parameters are to be estimated and these involve complicated interactions, the situation readily
arises where, even when a very large data set is available, there are only one or two people who fit
into certain classes/categories on which there must be information to estimate interaction
parameters. The problem is compounded when there are numerous categories with nobody.
Without information coefficients cannot be estimated.

Beaman and Renoux recognized the kind of problem just described when they began
work on the research which eventually led to this TN. They examined the differences between the
model defined by Equation 1 and a much more adequate model “including” interaction affects.
The more adequate model that they chose to use was a model defined by the Michigan AID
Computer Program. The reader can learn how this program works from material in TN 4 or TN 27
where there are examples of its use. One can also refer to the original writings about the AID
Program by Sonquist and Morgan (1964).

What was done by Renoux and Beaman was to try to determine which interactions
should be considered if a model was to fit a given set of data. Using the model defined by
Equation 1 and using an AID model, predictions for individuals were written out on magnetic



tape (one available storage medium to use in the 70s) when a “large” amount of information was
to be stored for further computer processing. The idea was that if cases could be identified where
there were large differences between AID predictions and the analysis of variance predictions,
these would provide a clue as to what interaction terms should be incorporated into the main
effect regression model. It was planned that the differences between these two predicted values
would (for example) be examined by looking at the average value of it for various cross
classifications of socio-economic variables.

Unfortunately, much work led to few results. As one might guess from the variance-
explained values reported in Table 1, the differences between AID predictions and analysis of
variance predictions were highly variable. Little was learned about interactions to add but what
was evident was that AID analyses explained much more variance than the main effects
regression model.

In Table 1 you find quite a comprehensive set of percentage of variance-explained values
in which AID results on the 1969 CORD Study National Survey Data on Canadian Residents'
Participation in Outdoor Activities are compared with main effect model results. Regression
results for 1972 are also given for reference purposes. The R2 values for 1972 ANOVA are
comparable with the 1969 values because they were produced for persons 18 years of age which
was the sampling universe in the 1969 study. Also they were produced for participation-non
participation as the dependent variable and with the same independent variables. What one
should notice from Table 1 is that, as a rule of thumb, use of AID resulted in explaining about
twice as much variance as the main effects regression model. If one looks at the list of activities in
column one of Table 1 they first see swimming participation in a city and they may note that for
males 17% of the variance was explained using AID. The use of ANOVA resulted in 13% of the
variance being explained. This is obviously not a 2 to 1 ratio but, then, for bird-watching for
males, one notices the balance shifting as with ANOVA 2.5% of the variance is explained
compared to 14% for AID. For outdoor photography for males, there is 12% for AID and 6% for
ANOVA, which is very close to the 2 to 1 ratio suggested earlier. A similar ratio holds for male
use of Historic Sites and when one examines R2 for the female use model for Historic Sites one
sees that there is a ratio of .08 to .04 or 2 to l. The results continue in a similar manner. In the odd
case the ANOVA model is not too much "poorer" than the AID model while most results show
that there was a great deal of variance to be explained which the ANOVA model does not
explain.

When this situation was recognized the decision was made to involve other researchers in
the attempt to find interaction effects of the magnitude that (it appeared clear from the difference
between AID and ANOVA analyses) it should be possible to find. The researchers who took on
this task were confronted with two problems. One was becoming familiar with CORD data study,
and the other was developing a strategy for estimating interaction effects that would explain
something like the amount of variance that it seems clear was possible to explain by interaction
effects. This thrust of the research effort began with an exploratory analysis of the CORD Study
1972 National Survey data on Canadian Residents' Participation in Outdoor Activities, which data
had become available since Renoux and Beaman had begun their work. The variables used from
these data and their coding are shown in Table 2.



TABLE 1: COEFFICIENTS OF DETERMINATION, R2'S, FOR PARTICIPATION IN
EACH ACTIVITY IN 1969 AND 1972, FOR MALES AND FEMALES, OBTAINED
THROUGH ANOVA AND AID

Males Females
1969 1969 1972 1969 1969 1972
AID ANOVA AID ANOVA

PARTICIPATION IN CITY
1. Swimming (.176) .132 --- (.194) .139 ---
2. Nature/Bird Watching (.142) .024 --- (.075) .016 ---
3. Outdoor Photography - (.119) .062 --- (.106) .053 ---
4. Visit Historic Sites (.117) .062 .051 (.084) .042 .036
5. Visit Other Parks (.108) .060 --- (.108) .049 ---
6. Drive for Pleasure (.086) .050 .043 (.077) .042 .045
7. Sightseeing Urban (.105) .066 .030 (.090) .057 .025
8. Toboggan/Sledding (.191) .0b6 --- (.165) .039 ---
9. Picnicking (.111) .035 .018 (.102) .049 .019
10. Walk/Hiking (.146) .091 .064 (.125) .079 .059
11. Golfing (.117) .069 --- (.151) .034 ---
12. Ice Skating (.208) .159 .094 (.203) .146 .059
13. Bicycling (.171) .081 .085 (.194) .096 .102
PARTICIPATION IN COUNTRY
14. Swimming (.202) .155 --- (.168) .144 ---
1b. Nature/Bird Watching (.075) .014 --- (.088) .032 ---
16. Visit Historic Sites (.096) .056 .075 (.101) .058 .065
17. Visit Other Parks (.092) .052 --- (.094) .063 ---
18. Drive for Pleasure (.081) .057 .056 (.095) .060 .071
19. Sightseeing (.101) .073 .058 (.128) .088 .063
20. Toboggan/Sledding (.180) .088 --- (.164) .087 ---
21. Picnicking (.114) .082 .092 (.133) .096 .100
22. Walk/Hiking (.121) .065 .069 (.099) .061 .063
23. Golfing (.128) .077 --- (.141) .025 ---
24. Ice Skating (.139) .056 .098 (.151) .055 .072
25. Bicycling (.148) .046 .063 (.142) .076 .066
OTHERPARTICIPATION
26. Swimming (.280) .244 --- (.260) .217 ---
27. Tent Camping (.120) .069 .179 (.088) .043 .100
28. Trailer Camping (.061) .022 .038 (.084) .082 .036
20. Pickup Camping (.156) .019 .024 (.125) .022 .024
30. Hunting (.118) .084 .091 (.150) .035 .030
31. Power Boating (.127) .088 .071 (.112) .064 .065
32. Canoeing (.146) .080 .094 (.094) .036 .066
33. Sailing (.131) .053 .058 (.217) .032 .061
34. Water Skiing (.186) .155 --- (.215) .067 ---
35. Nature/Bird Watching (.068) .017 --- (.081) .029 ---
36. Outdoor Photography (.122) .079 --- (.091) .055 ---
37. Visit Historic Sites (.112) .078 .092 (.101) .073 .074
38. Visit Other Parks (.101) .076 --- (.105) .077 ---
39. Drive for Pleasure (.102) .066 .069 (.104) .067 .095
40. Sightseeing (.112) .088 .062 (.130) .099 .060
41. Climbing (.095) .037 --- (.130) .029 ---
42. Snow Skiing (.208) .125 .090 (.223) .102 .087
43. Snowmobiling (.160) .103 .131 (.127) .074 .103
44. Toboggan/Sledding (.173) .107 --- (.158) .102 ---
45. Picnicking (.133) .090 .101 (.148) .115 .104
46. Walk/Hiking (.142) .086 .091 (.114) .078 .089
47. Golfing (.174) .121 --- (.141) .043 ---
48. Ice Skating (.233) .193 .176 (.226) .171 .128
49. Horseback Riding (.198) .102 .108 (.213) .109 .114
50. Bicycling (.156) .083 .135 (.182) .118 .147
51. Tennis (.235) .139 --- (.266) .117 ---
52. Fishing --- --- .084 --- --- .053
53. Hunting/Fishing --- --- .104 -- --- .058
54. Small Game Hunting -- --- .077 -- --- .032



TABLE 2: 1972 CANADIAN'S PARTICIPATION IN OUTDOOR ACTIVITIES
VARIABLES USED IN ANALYSES REPORTED IN THIS PAPER

Variable Description Original Value Recoded
for Table 3

I. AGE
10 to 11 years 1 1

12 14 2 1
15 3 1

16 17 4 1
18 19 5 1

20 6 2
21 24 7 2
25 29 8 2
30 34 5 3
3S 39 10 3
40 44 11 4

49 12 4
50 55 13 4
56 b4 14 4

65 and over 15 4
II. EDUCATION

No formal 0 1
Some public school 1 1

Finished public 2 1
Some High School 3 2

Finished High School 4 3
Some tech-Senior

College 5 3

Graduate of tech-
Senior College 6 3

Some university 7 3
Graduate of university 8 3
III. FAMILY SIZE
One 1 1
Two 2 2
Three 3 3
Four 4 4
Five 5 4
Six 6 5
Seven 7 5

Variable Description Original Value Recoded for
Table 3

Eight 8 5
Nine 9 5
Ten and over 10 5
IV. INCOME 5
0 - $ 2,999 1 1
3,000 - 4,499 2 1
4,500 - 5,999 3 1
6,000 - 7,499 4 2
7,500 - 8,999 5 2
9,000 - 10,499 6 2
10,500 - 11,999 7 3
12,000 - 13,999 8 3
14,000 and over 9 3
V. CITY SIZE
500,000 and over 1 1
100,000 - 500,000 2 1
30,000 - 100,000 3 2
10,000 - 30,000 4 3
1,000 - 10,000 - 5 4
Rural 6 5
VI. GENDER
Male 1 0
Female 2 1



Initially, a number of equations were derived to give the researchers a feel for what
second order interaction effects were relatively important (Arsenault, Dionne, & Ritchie 1975). A
methodology adopted for doing this was as follows:

a) Each of several control variables, sex, age and education, was chosen in turn (see right-
hand column of Table 3).

b) Regressions were carried out to determine how the form of an equation to explain
participation in hunting depended on the value of the control variable. For example, with
age as the control variable, participation in hunting was predicted for persons 10 to 19
with a first independent variable/ sex = x(1), then for each of the other independent
variables X(2) to X(5), resulting in the equations which follow and the others that would
be written if one followed across the first line under the heading age:

P(of person 10 - 19) = C - .222*(1)sex relation
" = C - .088*(3)education relation
" = C - .000*(4)household size relation
" = C - .003*(5)income relation

WHERE C is a constant.
c) Similar results were derived for other levels of the control variables. Specifically, the age

group 20 to 29 regressions were made giving equations like the ones above with the first
three such equations havIng coefficients of X(1) x (3) and x(4) of -.0222, .021 and 007
respectively.
To comment further, as shown in Table 3 when age is the independent variable the

equations obtained to estimate the probability of hunting for females is:
(3) p̂ = 0.064 - 0.012 x(2)

and for males,
(4) p̂ = 0.341 - 0.052 x(2)

Because the lines defined by Equations 3 and 4 are not parallel and have slopes that are
significantly different at the .05 level, (the t-test was applied) it may be concluded that there is an
interaction effect between sex and age. If there were no interaction effect then the difference
between the sexes could be accounted for by a sex effect as in the two equations following:
(5) p̂ (for example) = constant + male effect + B x(2)
(6) p̂ (for example) = constant + female effect + 3 x(2)

WHERE B is a regression coefficient of age that applies to both sexes
Since, as one can see from Table 2, variable x(2) has more than two values (e.g. 1, 2, 3, 4,

5, etc.), one can write the following based on Equations 3 and 4:
p̂ = .J64 + .012 = .076 for x(2) = 1 for a female
p̂ = .064 + (.012)2 = .088 for x(2) = 2 for a female etc. ∙∙for all levels of x(2)
p̂ = .341 - .052 = .J93 for x(2) = 1 for a male etc. ∙∙for all levels of x(2)
The reader can readily confirm that the system of equations given above cannot be solved

so that parameters are determined which make Equation 4 compatible with Equations 5 and 6.
Having the two coefficients of .012 and .072 in Equations and 4 makes it possible to reflect the
fact that age has a much more pronounced effect on male participation in hunting than it does for
females in the sense that young males may have a very high probability of hunting while older
males have a very Low probability similar to the general level of hunting for females. For females,
what is necessary to reflect behaviour is that there be a quite drastic peak in probability of



participating from almost nothing to maybe a .10 probability of participating. However, this peak
in relative terms is not drastic in absolute terms since compared to males one sees that old males
have almost no probability of participating whereas a young male has a 50% chance of
participating.

TABLE 3: METHOD l: RESULTS OF PREDICTING HUNTING
PARTICIPATION* USING 1972 CORD NATIONAL SURVEY DATA

Independent Variables Used in Regression with Selected Control
Variables

Sex Age Education
"Control" Variables X(1) X(2) X(3)
Sex
Males (1) -.052 .022
Females (2) -.012 .003
Age
10 to 19 years (1) -.222 .088
20 to 29 years (2) -.223 .021
30 to 39 years (3) -.216 .021
40 years & over (4) -.101 .003
Education
No Formal-Finished
public school (1) -.135 -.026
Some high school (2) -.250 -.054
Finished high
school and + (3) -.159 -.029

Household Size Income City Size
"Control" Variables X(4) X(5) X(6)
Sex
Males .031 .020 .343
Females .006 .012 .009
Age
10 to 19 years .000 .003 .045
20 to 29 years .007 .004 .026
30 to 39, years .010 .022 .027
40 years 6 over .006 .022 .016
Education
No Formal-Finished
public school .014 .034 .025
Some high school .034 .027 .033
finished high
school and + .006 .005 .021

* See the text for material on how to read the Table. Also one may note that significance test on differences
between theβ's were calculated but are not presented here because they play no rote in the discussion or in
arriving at the conclusions reached in this paper.

This should make it clear why the great number of drastically differing slopes in Table 3
present clear evidence that there are interactions that should be considered in developing models
to explain peoples' participation in outdoor activities. One could present statistical tests for the
difference in coefficients, which is what was done in an earlier report on the data presented in
Table 3 (Arsenault, Dionne & Ritchie 1975). But this is not done since there are problems in
comparing regression coefficients (a) because they are inter-correlated, (b) because the results of
including third and fourth variables are not considered and also (c) because subsequent results
presented in this paper are more important in confirming the magnitude and significance of



interactions. Those who wish to look at more material on what interactions there are and on their
detection may refer to Renoux (1973, 1975) for specific examples that have to do with the data of
concerned here. More general discussion is found in Sonquist & Morgan (1964).
A FIRST ATTEMPT TO DERIVE A FAIRLY GENERAL MODEL WITH
INTERACTIONS

The step taken after the screening procedure just described to show the value in pursuing
the matter of detecting interactions was one of introducing cross product terms into a linear
model. Unless theory provides a clear guide, one starts with a model which offers some chance of
success yet is also relatively manageable. In econometric research, and in some other areas where
concerns with interactions arise, interactions are often first introduced by defining them in terms
of a cross product of variables. So, if one assumes (as is done below) that 5 socio-economic
variables are needed in an equation to explain people's behaviour and outdoor activities, one may
write the following equation:
(7) Y=μ+β1X1+∙∙∙∙∙+β5X5+β1,2X1X2+∙∙∙∙∙+β4,5X4X5+ ε

WHERE e.g., X1 is the age variable, X2 is education level, X3 is a variable giving
household size, etc. as indicated in Table 2, (βn,nXn terms are omitted since there is one variable);

β's are the regression coefficients; and
εis an error term.
In the preceding equation the variables listed can be visualized as interval variables.

However, one might think that “education” is ordinal if not nominal. However, if variables are to
be multiplied as indicated in the equation, it is important that the multiplication means something.
For “gender” with 0-1 and other 0-1 variables there is a meaning but if for occupation there is not
even an obvious order related to the activity being considered, occupation cannot be included in
such a formulation. What one has gained by having a coefficient for e.g., the age by education
interaction is a model with fewer parameters. However, if for an activity participation increase
with age to a point and then declines, then neitherβ1X1 or cross product terms with β1X1

(e.g.β1,2X1X2) can reflect that “curved” relation. One needs terms in Xn such as X2. But, even
when variables are interval one does not usually know whether the age-education effect can really
be modeled by taking a multiple of age and education or even by including powers of variables.
The multiplicative interaction terms which appear in equations like Equation 3 are generally a
guess at what should appear. The alternative to using powers to allow for “curvature” of effects is
to form categories. By looking at effects for the ordered categories, or even fitting the effects, one
can often form a realistic picture of how effects change with a variables value (linearly or
otherwise). So, without theoretical justification, there is little point in considering powers of the
variables, or considering products of the variables including three, four or five variables in a
product. Regardless, at the time that analysis was beginning making estimates based on Equation
7 seemed to make sense.

Returning to the main theme, the hope was that when regressions were carried out to
determine the unknowns in Equation 7 enough interactions would have been considered. Table 4
shows the results that were obtained. One sees in the right-hand column that there was a nominal
increase in the value of R2 when the interaction terms were included in the model. For example,
when one looks at the results for a male model for tent camping, one sees the R2 was increased
from about .16 to .18. The first R2 is for the five “main effect” (individual variable) parameters (β)
being estimated, whereas the second R2 is for when 15 βwere estimated. If the interaction effects
were not important, the increase in variance explained would be that explained by adding 15



random error terms. In practical terms the introduction of these terms should have explained
about 10/(number of cases - 15) which is about .5% of the variance that remained to be
explained. But in fact the 2% explained is much in excess of the approximately .5% of the
variance that would have been explained by chance. An appropriate F test for the significance of
this variance explained is the F test with 10 and infinite number of degrees of freedom:
F(10,infinity) approx = (2000/10)(.015/.985) = 3.04 which is significant since it exceeds the .05
level of 2.54.

There is really no need to go into this kind of statistical test just introduced to see that the
results of introducing the interactions are significant. The very fact that many of the regression
coefficients, more than expected by chance, for the product terms are about twice or more of
their standard deviation. In aggregate such persistent significance indicates significance at the .05
level (the standard deviations are given in brackets below coefficients). One may notice that the
coefficient with value -.00291 for the tent camping model for males is almost twice its standard
deviation, which is .00160. Similarly the coefficient for theβ1,4 term, for theβ2,4 term and for the
β3,5 term are also substantial in comparison to their standard deviations. Also, there is the odd
coefficient for the interaction terms that has a magnitude more than three times its standard
deviation and which will allow one to accept with more confidence. These can be considered to
confirm significance based on the “conservative” two times rule that Draper and Smith (1966)
have suggested be used in some tests of significance in doing regressions where the distributions
are in doubt.

Table 4 shows the parameters of some models that are highly statistically significant
improvements over the regression models without interaction terms. However, one may wonder
how significant the improvement of an R2 from .16 to .18 is, compared to what could be
achieved. When one compares the results of using the AID program with the "simple" regression
results, there may be some surprise that introducing the interaction has explained so little
variance. There is certainly no basis for a feeling of elation because the interaction results are
statistically significant. This is particularly important in understanding why developing the kind of
equations for which coefficients are presented in Table 4 was not pursued. The researchers, who
were trying to improve on the simple model, saw that the improved model, though it offered a
significant improvement, did not appear to offer the improvement to be expected if the variance
that 'was available to be explained by interaction %as being explained. When R2 was (on the
average) being increased by 10 to 20%, getting in the proper interaction terms would increase it
by 100%. Something else needed to be done. Or did it?
VALIDATION OF AID RESULTS

If it does not appear that a predictive model is explaining the variance that it should, an
obvious first step might appear to be to incorporate more terms into the model. But concerns
about doing so have already been raised. Another Line of inquiry is to determine whether, in fact,
the model is doing well but that the limit of the R2 which might be attained has been assessed
incorrectly (a low R2 is fine). The possibility is that the AID program, because of the way it is set
up to search for variance, finds variance even if it cannot he explained by a model that is perfectly
appropriate to the data. By going to a simulation approach one knows what the true model is
because one has used the model to generate observations and one can then determine by how
much (if at all) AID indicates an excess of variance explained over what can be expected to be
explained by a model that is appropriate to the data.



TABLE 4:

*

*** Indicates that this variable was not considered in the regression because its explanatory power
was too small.



It was decided to generate a dependent variable Y having 0 and 1 values indicating
participation or non-participation. In the simulation, five variables with four levels of each
variable were defined. Values of Y around a grand mean of one-half were generated for 1500
cases. The formula for regression coefficients was:

β(i,j) = (1/4)((i - 2.5)/1.5)/2[1-j]
WHERE j indicates the variables 1 to 5 and i indicates the level of the variable that an

individual has, 1 to 4;
β(i,j) are the coefficients in: E(y) = U + β(j,i)X(j,i) (as noted U was taken to be ½)

A random number routine was used to independently and randomly generate the levels of
the 5 independent variables that characterize an observation. For example, (1, 3, 4, 1, 2) could
define a person for whom an observation was made. For this person:

E(y) = (1/2)+(1/4)[(-1)+(1/3)(1/2)+(1)(1/4) + (-1)(1/8)+(-1/3)(1/16)]
In the above one has (1/3)(1/2) as what could be described as the third term in E(y)

because the person has level 3 of variable 2. The (1/4) which is in each β(i,j) appears as a factor
that multiplies all fiveβ(i,j)'s. An observed Y was generated using random numbers so an
observation 1 had a probability of E(y) and 0 a probability of 1-E(y). In generating collections of
levels for variables, e.g. (1,3,4,1,2), it was considered that people were in levels 1 to 4 of each
variable in the ratios 4/3/2/1 so that 4 times as many people were assigned to level 1 of a variable
as to level 4. The sum 4+3+2+1=10 so cumulatively, level 4 is associated with 0 to .1, 2 with .1+
to .3, etc. Therefore, using a random number routine, for a variable X(i), if the random number
generated was under l/10 a person was assigned to level 4 of the variable X(i), if not level 4 but up
to .2 the level was set to 3, etc.

The results of the simulation study are shown in Table 5 where the ANOVA figures are
calculated on the basis of theory (because there was no need to estimate these results). The
results for AID analysis are the average results for 100 analysis runs. As can be seen the AID
model when applied to the given data to which another model is structurally appropriate explains
only slightly more variation than the model which is actually appropriate to the data, the
difference in explanatory power only being noticeable in the third figure of R2. The difference in
R2 is truly minimal and certainly much less than the difference between the ANOVA model and
AID results reported in Table 1.

Thus the difference in the R2 suggested by an AID run and the R2 found using regression
models should not be large if the regression models are truly appropriate to the data. So, it can be
concluded that there is good evidence that for models very similar to those developed using the
CORD Study data, the AID program detects relatively large sums of squares which almost
certainly do not relate to spurious interactions. It also appears safe to say that the results provide
a clear indication that there is a great deal more variance to be explained in the CORD Study data
than was explained by using the model with interaction terms for which results are presented in
Table 4. Introducing the interaction terms only explained about 20% of the variance that should
be explained if appropriate interaction terms had been considered. If the models had been good,
R2 should have gone up 100% on the average, not just by 20% as was the case. There may be
many more interactions to be considered and/or the interactions may be a different type from
those which are implicit in the formulation that was used.



TABLE 5: SUMMARY RESULTS OF AID AND ANOVA ANALYSES OF SIMULATED
DATA TO WHICH AN ANOVA MODEL IS STRUCTURALLY APPROPRIATE

MODEL
AID ANOVA

(1) Total sum of squares 336.2792 336.2792
(2) Between sum of squares 53.3586 56.8900
(3) Within sum of squares 276.9206 279.2892
Mean of y 0.32733 0.3393
S.D. of R2=(2)/(1) 0.170 0.168

The validation of AID results has only brought one back to the point of seeing that little
was gained by cross product analysis but that much must be achieved if models are to adequately
explain the relation between socio-economic variables and participation.
DISCUSSION

The commentary above in some sense presents a logical sequence which has occurred in
considering how models should be developed that may be used to explain people’s participation
in activities in terms of their socio-economic characteristics. However, one very important
practical question remains. When the logical sequence has been built up it shows that interaction
terms should be considered in developing the kinds of models of which applications have beer
introduced in TN 12 and 13. Therefore, how simple should models be that are applied in the way
indicated in the TN 12? For example, should estimates be made for sub-areas of Canada based on
National or Provincial data using relatively simple models or is this a dangerous practice? If an
area of Canada is very similar to the nation as a whole then one can see why one could use a
model which is deficient in certain respects. Even if interactions are not considered, predictions
could be close. However, when one recognizes the disparities in Canada in terms of what
activities can be carried out, what differentials there are in terms of age, income etc. then the
dangers inherent in using parameters for a National ,model in making predictions for a sub-area
of the country are obvious. The area for which predictions are made can be such that the National
parameters are not relevant. One must be very concerned that the National parameters are only
aggregate parameters with no particular relevance to any sub-areas that deviate substantially from
the national average.

In the context of this paper the crux of the concern is not whether there are disparities
within Canada but whether the effects of these disparities on peoples' participations in activities
can be adequately modeled only considering first order effects. Should second order effects be
considered because these explain regional differences? Are higher order effects important? We
do not know and need to know if models are to be used with confidence.

One is confronted with the fact that the simple analysis of variance model appears to only
“tap” part the variance that should be explained by socio-economic characteristics. As of the mid
1970s it is impossible to say how much this deficiency of a model influences predictions by
resulting in bias. Actually, there is one area of model deficiency on which comment can be made.
In TN 20 supply factors are derived that show that, for at least some activities, regression
equations should include not only socio-economic variables, but a measure of supply in the
various areas in which people live for whom predictions are made. These supply factors can be
visualized by:
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Now, even though supply factors may only account for 1/5 the variance that socio-
economic characteristics do, one need only look at TN 25 to see that (for example for skiing) the
supply factors for Alberta and B.C. are very important in making correct predictions of
participation.

The problem with supply effects is that they should be considered but they may not be
known or may only be known inaccurately. As indicated in TN 20 massive amounts of data are
required to estimate supply effects from participation data and there is no known way, as of the
1970s, to calculate them based on inventory information on what facilities there are. Developing
formulae for computing supply factors for “activity groups” based on "resource inventory" data
would appear to be very important if good use is to be made of ANOVA models. Of course, the
implicit challenge is understanding substitutability and its relation to supply and user groups so
interaction between activities and their supply is properly modeled (see specifically Ch. 5 and 6).

On another matter, comments on AID have ignored an important point. That is that there
are kinds of interactions which it is convenient to consider and there are kinds which it is
extremely inconvenient to consider. The reader may well ask why there is not a proposal to forget
about using regression models to make predictions (Cesario gives an example of using an AID
model to make predictions in TN 4). The reason not to use AID models in making predictions is
that they require detailed multivariate information. Such information is may be available using
Canada Census micro data files or even by special tabulation. Regardless, if models are seriously
deficient, modelling can produce results that are better than those from a local survey. But if you
do not have any idea if results are really bad, presumably you go with a survey if you can afford
that. In this context AID predictions being slightly more accurate than ANOVA predictions in
terms of their variance, is of no value if the inability to consider supply effects results in serious
error in using AID models. The big problem for prediction, given the 1970 state of the art is
validity, not reliability.

Even if it is not desirable to use AID to make predictions, one may not see what the
problem is in considering any arbitrary interaction between 2, 3 or more variables. The problem is
that if there is an age-education interaction effect for males, one must be able to specify how
many males there are in a specific age-education groups to introduce this interaction into
estimation. This may not be difficult in some cases. Census data may be used. However, as of the
70s, getting the information on males by education for small areas of Canada to define a trend
was not necessarily trivial. When other variables are considered on which data are collected on a
sample basis (collected using the long census questionnaire that is only administered to a sample
of Canadian Residents even in a Census), the problem is compounded because data for small
areas obtained by special requests for tabulations may be costly, variable and present other
problems. If one is to make projections of the number of males in certain age-education groups
for 20 years in the future, one must consider the consequence of introducing interactions into a
model if they are ones for which one cannot make reasonable projections of the relevant n i,j, the
“net” subpopulation to the βi,j applies (re “net” see TN 6).

The preceding paragraph raises an issue taken up in TN 6. If the accuracy/reliability of a



model's parameters is not all that is of concern in using a model and if one is concerned about
both the accuracy of the βi,j 's and of the ni,j, the number of people in certain socio-economic
groups, one should not concentrate on theβi,j and problems with interactions if, in relative terms,
there is large inaccuracy is in the ni,j's which can actually be corrected.

When it comes to the matter of modelling using a small sample, one should look at the
results presented in TN 6 and recognize that unless sample sizes are in the order of 4,000 or larger
then predictions made using the regression results are going to be extremely inaccurate. If some
kind of statement is to be made about participation by people in a small area in a certain activity,
a reasonable choice may be to use a telephone survey or some other means of obtaining
information quickly rather than making predictions using modelling results. Given all the
objections that can be raised to telephone surveys, etc. little is gained by replacing the results of
such work with results produced using a theoretical model when it can be shown that these
results have errors which are probably far greater than any errors that arise in a well planned
telephone survey.

Turning to a quite different and less practical matter, an analyst often wants to use
regression results to draw some kind of conclusions about what is happening in the world or in
the universe that he is considering. The failure to introduce interaction terms into a model when,
in fact, they relate to about 50% of the variance that could be explained by the model can
certainly be expected to distort the picture of reality that an analyst infers.

In closing this discussion one should note, as indicated in other TN, if one is calculating
people's expected probability of participation in an activity then the very fact that probabilities are
being estimated suggests that each individual observation has a unique variability associated with
it. This heteroscedasticity problem, which is encountered in dealing with dependent variables
which cannot be accepted as having a constant variance, is the topic of concern in the Cicchetti
and Smith paper included as an appendix to this volume, and there is also useful commentary in
the review of Chapter VII.

CONCLUSION
This article has presented some rather distressing findings about the structure of models

commonly used for predicting participation and frequency of participation in outdoor activities. It
is clear that interaction effects play an important role in explaining peoples' participation in
outdoor activities. Neglecting such factors could result in errors arising which would mean that
estimates made have substantial biases. However, as pointed out, there is no evidence as to
whether (once supply factors are taken into account) biases tend to be very small because the
people to whom interaction effects apply tend to be very homogeneously distributed among the
population. There has been no research which shows whether or not there are some sectors of the
population for which interaction effects are extremely important and others for which a simple
model would be quite appropriate. Until such research has been carried out to clarify this matter it
must be recognized that there are dangers in making predictions using regression models.


